翻訳と辞書
Words near each other
・ Mohreh Nar Mohammad
・ Mohrenstraße (Berlin U-Bahn)
・ Mohrezi
・ Mohrg
・ Mohri
・ Mohri Pur
・ Mohri Sharif
・ Mohria
・ Mohring effect
・ Mohrite
・ Mohrkirch
・ Mohrland, Utah
・ Mohrman-Jack-Evans House
・ Mohrsville, Pennsylvania
・ Mohr–Coulomb theory
Mohr–Mascheroni theorem
・ Mohr–Tranebjærg syndrome
・ Mohs
・ Mohs (automobile)
・ Mohs scale of mineral hardness
・ Mohs surgery
・ Mohsen Ab Rural District
・ Mohsen Abdel Hamid
・ Mohsen Al-Eisa
・ Mohsen al-Fanagry
・ Mohsen Al-Garni
・ Mohsen al-Sukkari
・ Mohsen Alimardani
・ Mohsen Aminzadeh
・ Mohsen Amiryoussefi


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Mohr–Mascheroni theorem : ウィキペディア英語版
Mohr–Mascheroni theorem
In mathematics, the Mohr–Mascheroni theorem states that any geometric construction that can be performed by a compass and straightedge can be performed by a compass alone. The result was originally published by Georg Mohr in 1672,〔Georg Mohr, ''Euclides Danicus'' (Amsterdam: Jacob van Velsen, 1672).〕 but his proof languished in obscurity until 1928.〔Hjelmslev, J. (1928) "Om et af den danske matematiker Georg Mohr udgivet skrift ''Euclides Danicus'', udkommet i Amsterdam i 1672" (a memoir ''Euclides Danicus'' published by the Danish mathematician Georg Mohr in 1672 in Amsterdam ), ''Matematisk Tidsskrift'' B , pages 1–7.〕〔Schogt, J. H. (1938) "Om Georg Mohr's ''Euclides Danicus''," ''Matematisk Tidsskrift'' A , pages 34–36.〕 The theorem was independently discovered by Lorenzo Mascheroni in 1797.〔Lorenzo Mascheroni, ''La Geometria del Compasso'' (Pavia: Pietro Galeazzi, 1797). (1901 edition. )〕
==Proof approach==
To prove the theorem, each of the basic constructions of compass and straightedge need to be proven to be doable by compass alone. These are:
#Creating the line through two existing points
#Creating the circle through one point with centre another point
#Creating the point which is the intersection of two existing, non-parallel lines
#Creating the one or two points in the intersection of a line and a circle (if they intersect)
#Creating the one or two points in the intersection of two circles (if they intersect).
Since lines cannot be drawn without a straightedge (1.), a line is considered to be given by two points. 2. and 5. are directly doable with a compass. Thus there need to be constructions only for 3. and 4.〔Norbert Hungerbühler, "A Short Elementary Proof of the Mohr–Mascheroni Theorem," The American Mathematical Monthly, vol. 101, no. 8, p. 784, Oct. 1994. 〕

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Mohr–Mascheroni theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.